Vol.7 Issue 3, March 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open

J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

FRACTIONAL DIFFERENTIAL OPERATORS INVOLVING SPECIAL FUNCTIONS AND **GENERAL CLASS OF POLYNOMIALS**

Ram Niwas Meghwal

Department of Mathematics, Government College, sujangarh -341507 Rajasthan (INDIA)

Abstract

In this paper we use fractional differential operators $D_{k,\alpha,x}^n$ to derive a certain fractional Calculus formulae for Fox's H-function by the application of fractional Calculus formulae involving a general class of polynomials.

Key words:-Fractional differential operator, special-function general class of polynomials.

AMS subject classification 2001 MSC: 26a3333c41

INTRODUCTION AND DEFINITIONS

The fractional derivative of special function of one and more variables is important such as in the evaluation of series,[10,15] the derivation of generating function [12,chap.5] and the solution of differential equations [4,14;chap-3] motivated by these and many other avenues of applications, the fractional differential operators $D^n_{k, lpha, x}$ and ${}_{lpha} D^\mu_x$ are much used in the theory of special function of one and more variables.

We use the fractional derivative operator defined in the following manner [14] -------

$$D_{k,\alpha,x}^{n}(x^{\mu}) = \prod_{r=0}^{n-1} \left[\frac{\sqrt{\mu + rk + 1}}{\sqrt{\mu + rk - \alpha + 1}} \right] x^{\mu + nk} \qquad \dots \dots (1.1)$$

Where $\alpha \neq \mu+1$ and α and k are not necessarily integers Using the following form of the binomial theorem

$$(X + \xi)^{-\lambda} = \xi^{-\lambda} \sum_{m=0}^{\infty} \frac{(\lambda)_m}{!m} \left(\frac{-x}{\xi}\right)^m$$

Raina [5] obtained a fractional differential formula for the function z^p using generalized Gauss theorem, while Ross[7] obtained the fractional integral transformation by obtained the fractional integral formula for the function $(\alpha z + \beta)^a$ using series expansion method .kalla et al [4] has derived integral transformation by orthogonal polynomials. Ali et al [1] generated the the fractional

International Journal of Engineering, Science and Mathematics

Vol.7 Issue 3, March 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed

Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

expansion of the Laguerre polynomials and Soni and Singh [12] obtained the **fractional** differential formulae involving a general class of polynomials.

The present work is an attempt in the direction of obtaining fractional calculus formula by utilizing series expression method, introduced by srivastava [9]. The name general class of polynomials, itself indicates the importance of the results, because we can derive a number of fractional calculus formulae for various classical orthogonal polynomials.

MAIN RESULT FIRST.

$$D_{k,\alpha,x}^{n} [X^{\mu} (X+\xi)^{-\lambda} S_{l}^{m} \{X^{\rho} (X+\xi)^{-\sigma}\}] =$$

$$\xi^{-\lambda} X^{\mu+nk} \sum_{j=0}^{\left[\frac{l}{m}\right]} \frac{(-l)_{mj}}{!j} A_{l,j} \left(\frac{X^{\rho}}{\xi^{\sigma}}\right)^{j} \sum_{m=0}^{\infty} \frac{(\lambda+\sigma j)_{m}}{!m} \frac{(-1)^{m}}{\xi^{m}}$$

$$\prod_{g=0}^{n-1} \frac{\Gamma\mu + m + \rho j + gk + 1}{\Gamma\mu + m + \rho j + gk - \alpha + 1} X^{m}$$

Provided that min(k, λ , ρ , σ) > 0 $\left|\frac{x}{\xi}\right|$ < 1 and Re(k+ ρ j- μ +1) > 0

....(1)

MAIN RESULT FIRST.

$$D_{k,\alpha,x}^{n}[X^{\mu} S_{n}^{m} \{X^{\rho}(X+\xi)^{-\sigma}\}] H_{P,Q}^{M,N}(X^{\mu})$$

$$= \sum_{m=0}^{\infty} \sum_{j=0}^{\left[\frac{n}{m}\right]} \frac{(-n)_{mj}}{!j} \frac{(-1)^m}{!m} \frac{(\sigma j)_m}{\xi^m} A_{n,j} \xi^{-\sigma j} X^{\mu+\rho j+m+nk} H_{P+1,Q+1}^{M,N+1} \left[X^{\mu} / (-\mu-\mu s-m-\rho j,k) s=0, n-1 \alpha j, \alpha j 1, Pb j, \beta j 1, q(-\alpha-\mu-\mu s-m-\rho j,k) s=0, n-1 \alpha j, \alpha j 1, Pb j, \beta j 1, q(-\alpha-\mu-\mu s-m-\rho j,k) s=0, n-1 \alpha j, \alpha j 1, Pb j, \beta j 1, q(-\alpha-\mu-\mu s-m-\rho j,k) s=0, n-1 \alpha j, \alpha j 1, Pb j, \beta j 1, q(-\alpha-\mu-\mu s-m-\rho j,k) s=0, n-1 \alpha j, \alpha j 1, Pb j, \beta j 1, q(-\alpha-\mu-\mu s-m-\rho j,k) s=0, n-1 \alpha j, \alpha j 1, Pb j, \beta j 1, q(-\alpha-\mu-\mu s-m-\rho j,k) s=0, n-1 \alpha j, \alpha j 1, Pb j, \beta j 1, q(-\alpha-\mu-\mu s-m-\rho j,k) s=0, n-1 \alpha j, \alpha j 1, Pb j, \beta j 1, q(-\alpha-\mu-\mu s-m-\rho j,k) s=0, n-1 \alpha j, \alpha j 1, Pb j, \beta j 1, q(-\alpha-\mu-\mu s-m-\rho j,k) s=0, n-1 \alpha j, \alpha j 1, Pb j, \beta j 1, q(-\alpha-\mu-\mu s-m-\rho j,k) s=0, n-1 \alpha j, \alpha j 1, Pb j, \beta j 1, q(-\alpha-\mu-\mu s-m-\rho j,k) s=0, n-1 \alpha j, \alpha j 1, Pb j, \beta j 1, q(-\alpha-\mu-\mu s-m-\rho j,k) s=0, n-1 \alpha j, \alpha j 1, Pb j, \beta j 1, q(-\alpha-\mu-\mu s-m-\rho j,k) s=0, n-1 \alpha j, \alpha j 1, Pb j, \beta j 1, q(-\alpha-\mu-\mu s-m-\rho j,k) s=0, n-1 \alpha j, \alpha j 1, Pb j, \beta j 1, q(-\alpha-\mu-\mu s-m-\rho j,k) s=0, n-1 \alpha j, \alpha j 1, Pb j, \beta j 1, q(-\alpha-\mu-\mu s-m-\rho j,k) s=0, n-1 \alpha j, \alpha j 1, Pb j, \beta j 1, q(-\alpha-\mu-\mu s-m-\rho j,k) s=0, n-1 \alpha j, \alpha j 1, Pb j, \beta j 1, q(-\alpha-\mu-\mu s-m-\rho j,k) s=0, n-1 \alpha j, \alpha j 1, Pb j, \beta j 1, q(-\alpha-\mu-\mu s-m-\rho j,k) s=0, n-1 \alpha j, \alpha j 1, Pb j, \beta j 1, q(-\alpha-\mu-\mu s-m-\rho j,k) s=0, n-1 \alpha j, \alpha j 1, Pb j, \beta j 1, q(-\alpha-\mu-\mu s-m-\rho j,k) s=0, n-1 \alpha j, \alpha j 1, Pb j, \beta j 1, q(-\alpha-\mu-\mu s-m-\rho j,k) s=0, n-1 \alpha j, \alpha j 1, q(-\alpha-\mu-\mu s-m-\mu s-\mu-\mu s-\mu-\mu-\mu s-\mu-\mu s-\mu-\mu$$

Provided that min(k, λ , ρ , σ)> 0 $\left|\frac{x}{\xi}\right|$ < 1 and Re(k+ ρ j- μ +1) > 0

....(2)

Proof:-For the proof of this result we shall utilize following definition introduced by srivastava [9] or general class of polynomials

$$S_n^m(X) = \sum_{j=0}^{\left[\frac{n}{m}\right]} \frac{(-n)_{mj}}{!_j} A_{l,j} X^j \qquad \dots (2.2)$$

Where m is an arbitrary positive integer and the coefficient ($A_{l,j}>0$) are arbitrary constant real or complex

International Journal of Engineering, Science and Mathematics

Vol.7 Issue 3, March 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed

Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Expressing the general class of polynomials $S_n^m(x)$ occuring on its left hand side in the series from given (2.2) the left hand side of (2.1) $\{say_{\bigoplus}\}$ takes the following form

$$\bigoplus \qquad = \qquad D^n_{k,\alpha,x} \left[X^\mu (X+\xi)^{-\lambda} \sum_{j=0}^{\left[\frac{n}{m}\right]} \frac{(-n)_{mj}}{!j} A_{l,j} X^{\rho j} \left\{ (X+\xi)^{-\sigma j} \right\} \right]$$

Using the following form of the Binomial theorem

$$(X+\xi)^{-\lambda} = \xi^{-\lambda} \sum_{m=0}^{\infty} \frac{(\lambda)_m}{!_m} \left(\frac{-x}{\xi}\right)^m \qquad \dots$$
 (2.3)

In the above expression we have

$$\bigoplus = \xi^{-\lambda} \sum_{j=0}^{\left[\frac{l}{m}\right]} \frac{(-l)_{mj}}{!j} A_{l,j} \xi^{-\sigma j} \quad \sum_{m=0}^{\infty} \frac{(\lambda + \sigma j)_m}{!m} \frac{(-1)^m}{\xi^m} D_{k,\alpha,x}^n \left(X^{k+\rho j + m} \right)$$

We use the fractional derivative operator defined in the following manner [15]

$$D_{k,\alpha,x}^{n}(x^{\mu}) = \prod_{r=0}^{n-1} \left[\frac{\sqrt{\mu + rk + 1}}{\sqrt{\mu + rk - \alpha + 1}} \right] x^{\mu + nk}$$

Where $\alpha \neq \mu+1$ and α and k are not necessarily integers and after simplification we get required result (2.1)

Proof:- First Taking as method in proof I and then using by mellin Barnes type contour integral for H-function for one variable and then simplification we get required result (2.2)

Special case I :- As special case of our main result if we take σ =0 and λ =0 we deduce the Then the formula (2.1) we have

$$D_{k,\alpha,x}^{n}\left(X^{\mu S_{n}^{m}X^{\rho}}\right) = \sum_{j=0}^{\left[\frac{n}{m}\right]} \frac{(-n)_{mj}}{!j} A_{n,j} \prod_{g=0}^{n-1} \frac{\Gamma_{\mu++\rho j+gk+1}}{\Gamma_{\mu++\rho j+gk-\alpha+1}} X^{\mu+\rho j+nk}$$
(3.1)

Special case :-II if we take $\sigma=0$

$$D_{k,\alpha,x}^{n}\left(X^{\mu S_{n}^{m}X^{\rho}H_{p,Q}^{M,N}(X^{\mu})}\right) = (-1)^{m}X^{\mu+m+nk} \quad \xi^{-\lambda}\sum_{j=0}^{\left[\frac{n}{m}\right]} \frac{(-n)_{mj}}{!j}A_{n,j}X^{\rho j}H_{P+1,Q+1}^{M,N+1}$$

$$\begin{bmatrix}
(-\mu - \mu s - m - \rho j, k)_{s=0,n-1} (a_{j,\alpha_{j}})_{1,p} \\
(b_{j,\beta_{j}})_{1,q} (-\alpha - \mu - \mu s - m - \rho j, k)_{s=0,n-1}
\end{bmatrix}$$
(3.2)

if we take $\lambda = 0$ in (3.2) while this is independent from λ i.e. there is no change in (3.2)

International Journal of Engineering, Science and Mathematics

Vol.7 Issue 3, March 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed

Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

3.Conclusion

In this paper we get fractional differential operator formulae involving special function and general class of polynomials. and their special cases.

4.Acknowledgement

The author is highly grateful to Dr R. S. Enaniya Head Department of Mathematics Govt.College Nagaur for their valuable help and suggestions to improve this paper

5.Refrence

[1]Ali I.(2000) Arbitrary Order linear ordinary differ integral equations with polynomial coefficients, Journal of Fractional Calculus,vol 17.pp.49-57.

[2]Goyal, S.P., Jain, R.M. and Gaur, Neelima (1991) Fractional integral operators involving a product of generalized hyper geometric functions and a general class of polynomials, Indian J.Pure appl.Math.,22(5); 403-411.

[3] Galue, L., Ali, I. and Kalla, S.L.(2000) An extension of the Laguerre polynomials and associated orthogonal functions, Jour.fract.cal. Vol 3, no 2, pp.161-172.

[4]Kalla, S.L., Virchenko,n.and Tsarenko,S.(1998)On some fractional order integral transforms generated by orthogonal polynomial,appl.Math.comput.,91,209-219.

[5] Riana, R.K.(1985) A note on the fractional derivatives of a general system of polynomials, Indian J.Pure. Appl. Math., 16(7), 770-774.

[6] Ross, B. (ed.)(1975) Fractional calculus and its applications, Lecture notes in math. Vol.457, springer-verlag, New York.

[7] Ross, B. (1994) J.Fractional calculus 5, 87-89.

[8] Saigo, M.and Riana, R.K.(1988) Fukuoka univ. sci.reports 18(1),pp.15-22.

[9] Srivastava ,H.M.(1972) Indian J.Math.vol,14,pp.1-6.

[10] Srivastava, H.M. and Nishimoto, K.(1993) J. Fractional calculus 3,87-89.

[11] Salter, I.J. (1966) Generalized hyper geometric functions, Cambridge University Press, London.

[12]Soni, R.C. and Singh Deepika(2002)Certain fractional derivative formulae involving the product of a general class of polynomials and the multivariable, Proc. Indian Acad. Sci.(math. Sci.) vol. 112, no 4,pp. 551-562.

[13] Vyas, D.N., Banerji, P.K. and Saigo, M. (1994) J. Fractional calculus, 6, 61-64.

[14] Misra A.P. Ganita, 26(1975), 1-18

[15]Lavoie J. L, Osler and Tremblay R: Fractional Derivatives and Special Functions SIAM, Rev.18(1976),240-268